[go: up one dir, main page]

login
A295662
Number of odd exponents larger than one in the canonical prime factorization of n.
10
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,216
FORMULA
Additive with a(p) = 0, a(p^e) = A000035(e) if e > 1.
a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A000035(A067029(n)) + a(A028234(n)).
a(n) = A162642(n) - A056169(n).
a(n) <= A295659(n).
a(n) = 0 iff A295663(n) = 0, and when A295663(n) > 0, a(n) <= A295663(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2*(p+1)) = 0.122017493776862257491... . - Amiram Eldar, Sep 28 2023
EXAMPLE
For n = 24 = 2^3 * 3^1 there are two odd exponents, but only the other is larger than 1, thus a(24) = 1.
For n = 216 = 2^3 * 3^3 there are two odd exponents larger than 1, thus a(216) = 2.
MATHEMATICA
Array[Count[FactorInteger[#][[All, -1]], _?(And[OddQ@ #, # > 1] &)] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A295662 n) (if (= 1 n) 0 (+ (if (= 1 (A067029 n)) 0 (A000035 (A067029 n))) (A295662 (A028234 n)))))
(PARI) a(n) = vecsum(apply(x -> x%2 - (x==1), factor(n)[, 2])); \\ Amiram Eldar, Sep 28 2023
CROSSREFS
Cf. A295661 (positions of nonzero terms).
Sequence in context: A359472 A295883 A366124 * A367512 A187946 A330549
KEYWORD
nonn,easy,changed
AUTHOR
Antti Karttunen, Nov 28 2017
STATUS
approved