OFFSET
1,216
LINKS
FORMULA
Additive with a(p) = 0, a(p^e) = A000035(e) if e > 1.
a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A000035(A067029(n)) + a(A028234(n)).
a(n) <= A295659(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2*(p+1)) = 0.122017493776862257491... . - Amiram Eldar, Sep 28 2023
EXAMPLE
For n = 24 = 2^3 * 3^1 there are two odd exponents, but only the other is larger than 1, thus a(24) = 1.
For n = 216 = 2^3 * 3^3 there are two odd exponents larger than 1, thus a(216) = 2.
MATHEMATICA
Array[Count[FactorInteger[#][[All, -1]], _?(And[OddQ@ #, # > 1] &)] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
PROG
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Antti Karttunen, Nov 28 2017
STATUS
approved