%I #9 Jul 21 2018 12:22:03
%S 1,1,1,2,4,8,16,32,64,128,256,512,1024,2047,4093,8185,16368,32732,
%T 65456,130896,261760,523456,1046784,2093312,4186112,8371200,16740352,
%U 33476610,66945033,133873694,267714648,535363824,1070596720,2140931616,4281339648,8561632256
%N Number of partitions of 1 into exactly 10*n+1 powers of 1/11.
%H Alois P. Heinz, <a href="/A295081/b295081.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = A294775(n,10).
%p b:= proc(n, r) option remember; `if`(n<r, 0, `if`(r=0,
%p `if`(n=0, 1, 0), add(b(n-j, 11*(r-j)), j=0..min(n, r))))
%p end:
%p a:= n-> b(10*n+1, 1):
%p seq(a(n), n=0..40);
%t b[n_, r_] := b[n, r] = If[n<r, 0, If[r==0, If[n==0, 1, 0], Sum[b[n-j, 11(r-j)], {j, 0, Min[n, r]}]]];
%t a[n_] := b[10n+1, 1];
%t Array[a, 40, 0] (* _Jean-François Alcover_, Jul 21 2018, from Maple *)
%Y Column k=10 of A294775.
%K nonn
%O 0,4
%A _Alois P. Heinz_, Nov 13 2017