[go: up one dir, main page]

login
A295081
Number of partitions of 1 into exactly 10*n+1 powers of 1/11.
2
1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4093, 8185, 16368, 32732, 65456, 130896, 261760, 523456, 1046784, 2093312, 4186112, 8371200, 16740352, 33476610, 66945033, 133873694, 267714648, 535363824, 1070596720, 2140931616, 4281339648, 8561632256
OFFSET
0,4
LINKS
FORMULA
a(n) = A294775(n,10).
MAPLE
b:= proc(n, r) option remember; `if`(n<r, 0, `if`(r=0,
`if`(n=0, 1, 0), add(b(n-j, 11*(r-j)), j=0..min(n, r))))
end:
a:= n-> b(10*n+1, 1):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, r_] := b[n, r] = If[n<r, 0, If[r==0, If[n==0, 1, 0], Sum[b[n-j, 11(r-j)], {j, 0, Min[n, r]}]]];
a[n_] := b[10n+1, 1];
Array[a, 40, 0] (* Jean-François Alcover, Jul 21 2018, from Maple *)
CROSSREFS
Column k=10 of A294775.
Sequence in context: A172320 A234592 A168082 * A227843 A271482 A335890
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 13 2017
STATUS
approved