OFFSET
1,8
COMMENTS
Number of primes in the interval (n/2, n).
Number of primes among the larger parts of the partitions of n into two distinct parts. For n=8, the partitions of 8 into two distinct parts are (7,1), (6,2), (5,3); 7 and 5 are prime so a(8) = 2. - Wesley Ivan Hurt, Apr 07 2018
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} A010051(n-i). - Wesley Ivan Hurt, Apr 07 2018
EXAMPLE
a(8) = 2 because there are 2 primes between 4 and 8: 5, 7.
a(19) = 3 because there are 3 primes between 9 and 19: 11, 13, 17.
MAPLE
A294602 := proc(n)
numtheory[pi](n-1)-numtheory[pi](floor(n/2)) ;
end proc:
seq(A294602(n), n=1..120) ; # R. J. Mathar, Dec 17 2017
MATHEMATICA
Array[PrimePi[# - 1] - PrimePi[Floor[#/2]] &, 86] (* Michael De Vlieger, Nov 03 2017 *)
PROG
(Magma) [0, 0] cat [#PrimesInInterval(Floor(n/2)+1, n-1): n in [3..86]];
(PARI) vector(86, n, primepi(n-1)-primepi(n\2))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Arkadiusz Wesolowski, Nov 03 2017
STATUS
approved