[go: up one dir, main page]

login
A289089
Imaginary parts of the recursive sequence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k), with a(0)=2, a(1)=2i.
8
0, 2, 4, 8, 16, 0, -480, -5632, -48896, -355328, -1901056, 667648, 238217216, 4976025600, 75193896960, 911384117248, 7730931236864, -6549305294848, -2307879895433216, -69748749748928512, -1498587541480669184, -25307341803434803200, -292113960612790272000
OFFSET
0,2
COMMENTS
Here, i is the imaginary unit. The complex integer sequence c(n) = A289088(n) + i*A289089(n) is one of a family of sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064 and A289082.
LINKS
S. Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.
FORMULA
E.g.f.: imag(2*L0*tan(L0*z + L1)), where L0 = sqrt(i-1) and L1 = arccos(sqrt(i+1)).
PROG
(PARI) c0=2; c1=2*I; nmax = 200;
a=vector(nmax+1); a[1]=c0; a[2]=c1;
for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k]));
imag(a)
CROSSREFS
Cf. A289088 (real part).
Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289067 (3,-1), A289068 (1,-2), A289069 (3,-2), A289070 (0,3), A289082 and A289083 (1,i), A289084 and A289085 (2,i), A289086 and A289087 (1,2i).
Sequence in context: A026096 A098864 A002546 * A010745 A269266 A317506
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jul 24 2017
STATUS
approved