[go: up one dir, main page]

login
A286396
Number of inequivalent n X n matrices over GF(9) under action of dihedral group of the square D_4.
3
1, 9, 1035, 48700845, 231628411446741, 89737248564744874067889, 2816049943117424212512789695666175, 7158021121277935153545945911617993395398302485, 1473773072217322896440109113309952350877179744639518847951721
OFFSET
0,2
COMMENTS
Burnside's orbit-counting lemma.
LINKS
M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
FORMULA
a(n) = (1/8)*(9^(n^2) + 2*9^(n^2/4) + 3*9^(n^2/2) + 2*9^((n^2 + n)/2)) if n is even;
a(n) = (1/8)*(9^(n^2) + 2*9^((n^2 + 3)/4) + 9^((n^2 + 1)/2) + 4*9^((n^2 + n)/2)) if n is odd.
MATHEMATICA
Table[1/8*(9^(n^2) + 2*9^((n^2 + 3 #)/4) + (3 - 2 #)*9^((n^2 + #)/2) + (2 + 2 #)*9^((n^2 + n)/2)) &@ Boole@ OddQ@ n, {n, 0, 7}] (* Michael De Vlieger, May 12 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
María Merino, Imanol Unanue, Yosu Yurramendi, May 08 2017
STATUS
approved