[go: up one dir, main page]

login
A286395
Numbers k such that (17*10^k + 67)/3 is prime.
1
1, 3, 7, 8, 9, 11, 15, 19, 29, 55, 76, 159, 266, 311, 394, 908, 1732, 1875, 4335, 6334, 7641, 16421, 33721, 139239, 157705, 160143
OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 6 followed by the digits 89 is prime (see Example section).
a(27) > 2*10^5.
EXAMPLE
3 is in this sequence because (17*10^3 + 67)/3 = 5689 is prime.
Initial terms and associated primes:
a(1) = 1, 79;
a(2) = 3, 5689;
a(3) = 7, 56666689;
a(4) = 8, 566666689;
a(5) = 9, 5666666689; etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(17*10^# + 67)/3] &]
KEYWORD
nonn,more,hard
AUTHOR
Robert Price, May 09 2017
EXTENSIONS
a(24)-a(26) from Robert Price, Jan 24 2019
STATUS
approved