[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286148
Triangle A286146 reversed.
2
1, 5, 2, 13, 16, 4, 25, 67, 12, 7, 41, 191, 106, 46, 11, 61, 436, 80, 31, 23, 16, 85, 862, 596, 379, 211, 92, 22, 113, 1541, 302, 781, 59, 277, 38, 29, 145, 2557, 1954, 193, 991, 631, 58, 154, 37, 181, 4006, 822, 2416, 467, 96, 212, 436, 57, 46, 221, 5996, 4852, 3829, 2927, 2146, 1486, 947, 529, 232, 56, 265, 8647, 1832, 706, 355, 3487, 142, 1771, 109, 94, 80, 67
OFFSET
1,2
COMMENTS
EXAMPLE
The first twelve rows of the triangle:
1,
5, 2,
13, 16, 4,
25, 67, 12, 7,
41, 191, 106, 46, 11,
61, 436, 80, 31, 23, 16,
85, 862, 596, 379, 211, 92, 22,
113, 1541, 302, 781, 59, 277, 38, 29,
145, 2557, 1954, 193, 991, 631, 58, 154, 37,
181, 4006, 822, 2416, 467, 96, 212, 436, 57, 46,
221, 5996, 4852, 3829, 2927, 2146, 1486, 947, 529, 232, 56,
265, 8647, 1832, 706, 355, 3487, 142, 1771, 109, 94, 80, 67
PROG
(Scheme) (define (A286148 n) (A286101bi (A002024 n) (A004736 n))) ;; For A286101bi see A286101.
(Python)
from sympy import lcm, gcd
def t(n, k): return (2 + ((gcd(n, k) + lcm(n, k))**2) - gcd(n, k) - 3*lcm(n, k))/2
for n in range(1, 21): print [t(n, k) for k in range(1, n + 1)][::-1] # Indranil Ghosh, May 11 2017
CROSSREFS
Cf. A286101.
Cf. A286146 (same triangle reversed).
Sequence in context: A330613 A085436 A277710 * A369369 A194048 A158868
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, May 06 2017
STATUS
approved