[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^4 + 64.
2

%I #29 Sep 08 2022 08:46:16

%S 64,65,80,145,320,689,1360,2465,4160,6625,10064,14705,20800,28625,

%T 38480,50689,65600,83585,105040,130385,160064,194545,234320,279905,

%U 331840,390689,457040,531505,614720,707345,810064,923585,1048640,1185985,1336400,1500689,1679680,1874225,2085200

%N a(n) = n^4 + 64.

%C This is the case k=2 of Sophie Germain's Identity n^4+(2*k^2)^2 = ((n-k)^2+k^2)*((n+k)^2+k^2).

%H Bruno Berselli, <a href="/A272297/b272297.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Sophie_Germain#Honors_in_number_theory">Sophie Germain's Identity</a>.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F O.g.f.: (64 - 255*x + 395*x^2 - 245*x^3 + 65*x^4)/(1 - x)^5.

%F E.g.f.: (64 + x + 7*x^2 + 6*x^3 + x^4)*exp(x).

%F a(n) = (n^2 - 8)^2 + (4*n)^2.

%t Table[n^4 + 64, {n, 0, 40}]

%o (PARI) vector(40, n, n--; n^4+64)

%o (Sage) [n^4+64 for n in (0..40)]

%o (Maxima) makelist(n^4+64, n, 0, 40);

%o (Magma) [n^4+64: n in [0..40]];

%o (Python) [n**4+64 for n in range(40)]

%o (Python) for n in range(0,10**5):print(n**4+64) # _Soumil Mandal_, Apr 30 2016

%Y Cf. A005917.

%Y Subsequence of A227855.

%Y Cf. A000583 (k=0), A057781 (k=1), A272298 (k=3).

%K nonn,easy

%O 0,1

%A _Bruno Berselli_, Apr 25 2016