[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272297
a(n) = n^4 + 64.
2
64, 65, 80, 145, 320, 689, 1360, 2465, 4160, 6625, 10064, 14705, 20800, 28625, 38480, 50689, 65600, 83585, 105040, 130385, 160064, 194545, 234320, 279905, 331840, 390689, 457040, 531505, 614720, 707345, 810064, 923585, 1048640, 1185985, 1336400, 1500689, 1679680, 1874225, 2085200
OFFSET
0,1
COMMENTS
This is the case k=2 of Sophie Germain's Identity n^4+(2*k^2)^2 = ((n-k)^2+k^2)*((n+k)^2+k^2).
FORMULA
O.g.f.: (64 - 255*x + 395*x^2 - 245*x^3 + 65*x^4)/(1 - x)^5.
E.g.f.: (64 + x + 7*x^2 + 6*x^3 + x^4)*exp(x).
a(n) = (n^2 - 8)^2 + (4*n)^2.
MATHEMATICA
Table[n^4 + 64, {n, 0, 40}]
PROG
(PARI) vector(40, n, n--; n^4+64)
(Sage) [n^4+64 for n in (0..40)]
(Maxima) makelist(n^4+64, n, 0, 40);
(Magma) [n^4+64: n in [0..40]];
(Python) [n**4+64 for n in range(40)]
(Python) for n in range(0, 10**5):print(n**4+64) # Soumil Mandal, Apr 30 2016
CROSSREFS
Cf. A005917.
Subsequence of A227855.
Cf. A000583 (k=0), A057781 (k=1), A272298 (k=3).
Sequence in context: A331224 A123994 A248770 * A291094 A291965 A255570
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 25 2016
STATUS
approved