[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271440
a(n) = sigma(prime(n)^n) - phi(prime(n)^n).
1
2, 7, 56, 743, 30746, 773527, 49783736, 1837403019, 160181560802, 29532404308019, 1666577516860962, 360777399719461393, 45691067858241526814, 3477439299142731351087, 518913689466371066697746, 147680787468230866751370317, 43490064769447225534580532962
OFFSET
1,1
FORMULA
a(n) = (2*prime(n)^n-prime(n)^(n-1)-1) / (prime(n)-1).
a(n) = (prime(n)^(n+1)-prime(n)^(n-1)*(prime(n)-1)^2-1) / (prime(n)-1).
a(n) = A051612(A062457(n)) = A000203(A062457(n)) - A000010(A062457(n)).
MAPLE
with(numtheory): A271440:=n->sigma(ithprime(n)^n)-phi(ithprime(n)^n): seq(A271440(n), n=1..30);
MATHEMATICA
Table[DivisorSigma[1, Prime[n]^n] - EulerPhi[Prime[n]^n], {n, 20}]
PROG
(PARI) a(n) = sigma(prime(n)^n) - eulerphi(prime(n)^n); \\ Altug Alkan, Apr 08 2016
CROSSREFS
Cf. A000010 (phi), A000040 (primes), A000203 (sigma), A051612, A062457.
Sequence in context: A366456 A211209 A363205 * A304984 A002658 A175818
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 07 2016
STATUS
approved