[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278748
E.g.f. C(x) is defined by: C(x) = 2 + Integral A(x)*B(x)^2 - A(x)^2*B(x) dx, where A(x) and B(x) are described by A278746 and A278747, respectively.
5
2, 0, 2, -8, -90, 520, -566, 50904, 396710, -18390200, 131511978, -3005766632, 33380803270, 1757150970120, -44857682845174, 950900072932696, -28165020555314970, -73025855982929720, 24480067437941915242, -834839712703258127208, 34458996334508149067270, -773502135061735864720760, -12427737319809527785823286, 1295375801958445816867049944, -74746823183505251943756410330, 3392808342679593497307739258440
OFFSET
0,1
FORMULA
Given e.g.f. C(x), functions A = A(x), B = B(x), and C = C(x) satisfy:
(1) A^2 + B^2 + C^2 = 5,
(2) A^3 + B^3 + C^3 = 9.
(3) A^4 + B^4 + C^4 = (A'^2 + B'^2 + C'^2 + 81)/5.
In vector form, functions A, B, and C may be defined by
(4) [A,B,C] = [0,1,2] + Integral [A,B,C] X [A^2,B^2,C^2] dx.
Specifically,
(4.a) A = Integral B*C^2 - B^2*C dx,
(4.b) B = 1 + Integral C*A^2 - C^2*A dx,
(4.c) C = 2 + Integral A*B^2 - A^2*B dx.
EXAMPLE
E.g.f.: C(x) = 2 + 2*x^2/2! - 8*x^3/3! - 90*x^4/4! + 520*x^5/5! - 566*x^6/6! + 50904*x^7/7! + 396710*x^8/8! - 18390200*x^9/9! + 131511978*x^10/10! - 3005766632*x^11/11! + 33380803270*x^12/12! + 1757150970120*x^13/13! - 44857682845174*x^14/14! + 950900072932696*x^15/15! +...
such that C(x) = 2 + Integral A(x)*B(x)^2 - A(x)^2*B(x) dx, and A(x) and B(x) begin as follows.
A(x) = 2*x + 6*x^3/3! - 24*x^4/4! - 1206*x^5/5! + 8280*x^6/6! - 52858*x^7/7! + 938952*x^8/8! + 6413418*x^9/9! - 322109160*x^10/10! + 4068033894*x^11/11! - 98801788536*x^12/12! + 1090129290506*x^13/13! + 34232660705880*x^14/14! - 1166338051942842*x^15/15! +...
B(x) = 1 - 8*x^2/2! + 16*x^3/3! - 72*x^4/4! + 640*x^5/5! + 6104*x^6/6! - 111888*x^7/7! + 1030936*x^8/8! - 20710880*x^9/9! + 100278648*x^10/10! + 4259777104*x^11/11! - 94939798408*x^12/12! + 2751909451200*x^13/13! - 58236639534824*x^14/14! - 39216365862992*x^15/15! +...
These series satisfy:
(1) A(x)^2 + B(x)^2 + C(x)^2 = 5,
(2) A(x)^3 + B(x)^3 + C(x)^3 = 9.
PROG
(PARI) {a(n) = my(A=x, B=1, C=2); for(i=1, n,
A = intformal(B*C^2 - B^2*C +x*O(x^n));
B = 1 + intformal(C*A^2 - C^2*A);
C = 2 + intformal(A*B^2 - A^2*B); ); n!*polcoeff(C, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A196504 A182550 A004514 * A342286 A211930 A212026
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 19 2016
STATUS
approved