[go: up one dir, main page]

login
A278509
a(n) = 3^{number of primes congruent to 3 modulo 4 dividing n (with multiplicity)}.
3
1, 1, 3, 1, 1, 3, 3, 1, 9, 1, 3, 3, 1, 3, 3, 1, 1, 9, 3, 1, 9, 3, 3, 3, 1, 1, 27, 3, 1, 3, 3, 1, 9, 1, 3, 9, 1, 3, 3, 1, 1, 9, 3, 3, 9, 3, 3, 3, 9, 1, 3, 1, 1, 27, 3, 3, 9, 1, 3, 3, 1, 3, 27, 1, 1, 9, 3, 1, 9, 3, 3, 9, 1, 1, 3, 3, 9, 3, 3, 1, 81, 1, 3, 9, 1, 3, 3, 3, 1, 9, 3, 3, 9, 3, 3, 3, 1, 9, 27, 1, 1, 3, 3, 1, 9, 1, 3, 27, 1, 3, 3, 3, 1, 9, 3, 1, 9, 3, 3, 3
OFFSET
1,3
LINKS
FORMULA
Fully multiplicative with a(p^e) = 1 if p = 2, (p mod 4)^e if p > 2.
a(n) = A065338(A000265(n)) = A000265(A065338(n)).
a(n) = A000244(A065339(n)) = 3^A065339(n).
MATHEMATICA
f[p_, e_] := Mod[p, 4]^e; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)
PROG
(Scheme) (define (A278509 n) (A065338 (A000265 n)))
CROSSREFS
Cf. also A278265.
Sequence in context: A336456 A227898 A035649 * A094782 A035666 A060592
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 28 2016
STATUS
approved