[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278310
Numbers m such that T(m) + 3*T(m+1) is a square, where T = A000217.
7
3, 143, 4899, 166463, 5654883, 192099599, 6525731523, 221682772223, 7530688524099, 255821727047183, 8690408031080163, 295218051329678399, 10028723337177985443, 340681375412721826703, 11573138040695364122499, 393146012008229658338303, 13355391270239113019379843
OFFSET
1,1
COMMENTS
Equivalently, both m+1 and 2*m+3 are squares for nonnegative m.
Corresponding triangular numbers T(m): 6, 10296, 12002550, 13855048416, 15988853699286, 18451128064030200, 21292585958400815526, ...
Square roots of T(m) + 3*T(m+1) are listed by A082405 (after 0).
Negative values of m for which T(m) + 3*T(m+1) is a square: -1, -2, -26, -842, -28562, -970226, -32959082, ...
FORMULA
O.g.f.: x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)).
E.g.f.: (exp((1-sqrt(2))^4*x) + exp((1+sqrt(2))^4*x) - 10*exp(x))/8 + 1.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
a(n) = 34*a(n-1) - a(n-2) + 40 for n>2.
a(n) = a(-n) = ((1 + sqrt(2))^(4*n) + (1 - sqrt(2))^(4*n))/8 - 5/4.
a(n) = 4*A001109(n)^2 - 1.
a(n) = -A029546(n) + 38*A029546(n-1) + 3*A029546(n-2) for n>1.
Lim_{n -> infinity} a(n)/a(n-1) = A156164.
Floor(sqrt(a(n))) = A182189(n) - 2.
a(n) - a(n-1) = 4*A046176(n) for n>1.
EXAMPLE
3 is in the sequence because T(3) + 3*T(4) = 6 + 3*10 = 6^2.
For n=5 is a(5) = 5654883, therefore floor(sqrt(5654883)) = 2377 = A182189(5) - 2 = 2379 - 2.
MAPLE
P:=proc(q) local n; for n from 3 to q do if type(sqrt(2*n^2+5*n+3), integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 18 2016
MATHEMATICA
Table[((1 + Sqrt[2])^(4 n) + (1 - Sqrt[2])^(4 n))/8 - 5/4, {n, 1, 20}]
RecurrenceTable[{a[1] == 3, a[2] == 143, a[n] == 34 a[n - 1] - a[n - 2] + 40}, a, {n, 1, 20}]
LinearRecurrence[{35, -35, 1}, {3, 143, 4899}, 50] (* G. C. Greubel, Nov 20 2016 *)
PROG
(Sage)
def A278310():
a, b = 3, 143
yield a
while True:
yield b
a, b = b, 34*b - a + 40
a = A278310(); print([next(a) for _ in range(18)]) # Peter Luschny, Nov 18 2016
(PARI) Vec(x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)) + O(x^50)) \\ G. C. Greubel, Nov 20 2016
(Magma) Iv:=[3, 143]; [n le 2 select Iv[n] else 34*Self(n-1)-Self(n-2)+40: n in [1..20]];
CROSSREFS
Subsequence of A000466.
Cf. A278438: numbers m such that T(m) + 2*T(m+1) is a square.
Cf. A078522: numbers m such that 3*T(m) + T(m+1) is a square.
Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: A084703 (k=-1), A076218 (k=3), this sequence (k=-5).
Sequence in context: A195937 A162363 A102965 * A195936 A323998 A172145
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 17 2016
STATUS
approved