[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the asymmetry degrees of all compositions of n without 2's.
2

%I #14 Aug 29 2016 11:15:05

%S 0,0,0,0,2,4,8,16,34,68,134,260,502,960,1824,3444,6472,12108,22566,

%T 41912,77608,143312,263990,485196,889938,1629256,2977642,5433344,

%U 9899776,18013288,32734928,59417944,107732106,195130092,353087560,638329168,1153012298

%N Sum of the asymmetry degrees of all compositions of n without 2's.

%C The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).

%C A sequence is palindromic if and only if its asymmetry degree is 0.

%D S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.

%H Colin Barker, <a href="/A275443/b275443.txt">Table of n, a(n) for n = 0..1000</a>

%H P. Chinn and S. Heubach, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Heubach/heubach5.html">Integer Sequences Related to Compositions without 2's</a>, J. Integer Seqs., Vol. 6, 2003.

%H V. E. Hoggatt, Jr., and Marjorie Bicknell, <a href="http://www.fq.math.ca/Scanned/13-4/hoggatt1.pdf">Palindromic compositions</a>, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,1,-3,1,-1).

%F G.f.: g(z) = 2z^4*(1-z)/((1+z)(1-2z+z^2-z^3)^2). In the more general situation of compositions into a[1]<a[2]<a[3]<..., denoting F(z) = Sum(z^{a[j]},j>=1}, we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))(1-F(z))^2).

%F a(n) = Sum_{k >= 0} k*A275442(n,k).

%e a(5) = 4 because the compositions of 5 without 2's are 5, 41, 14, 311, 131, 113, and 11111 and the sum of their asymmetry degrees is 0+1+1+1+0+1+0=4.

%p g := 2*z^4*(1-z)/((1+z)*(1-2*z+z^2-z^3)^2): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);

%t Table[Total@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {___, a_, ___} /; a == 2]], 1]]], {n, 0, 25}] // Flatten (* _Michael De Vlieger_, Aug 17 2016 *)

%o (PARI) concat(vector(4), Vec(2*x^4*(1-x)/((1+x)*(1-2*x+x^2-x^3)^2) + O(x^50))) \\ _Colin Barker_, Aug 29 2016

%Y Cf. A180177, A275442.

%K nonn,easy

%O 0,5

%A _Emeric Deutsch_, Aug 16 2016