[go: up one dir, main page]

login
A275154
Smallest positive integer which can be represented as the sum of distinct positive cubes in exactly n ways, or 0 if no such integer exists.
5
1, 216, 729, 1072, 1736, 1737, 2465, 2800, 2808, 3619, 3276, 4257, 4131, 4662, 4473, 5292, 5265, 5328, 6084, 5481, 6202, 5985, 6777, 6840, 7056, 7372, 7659, 7560, 7588, 7380, 7596, 7722, 8037, 8190, 8576, 8064, 8316, 9297, 9549, 8380, 9045, 9261, 9451, 9360, 8919, 10044, 9108
OFFSET
1,2
FORMULA
A279329(a(n)) = n.
EXAMPLE
a(4) = 1072 because 1072 = 7^3 + 9^3 = 2^3 + 4^3 + 10^3 = 1^3 + 6^3 + 7^3 + 8^3 = 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 and this is the smallest number that can be written as the sum of distinct positive cubes in 4 different ways.
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 01 2017
STATUS
approved