[go: up one dir, main page]

login
A223507
Petersen graph (3,1) coloring a rectangular array: number of 4Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0
1
216, 771, 20115, 426359, 9685063, 216562815, 4867038759, 109246101385, 2453094910375, 55078160026621, 1236680655855829, 27767207466078683, 623458974380912329, 13998557054872762899, 314310396038821269603
OFFSET
1,1
COMMENTS
Row 4 of A223504
LINKS
FORMULA
Empirical: a(n) = 25*a(n-1) +a(n-2) -1509*a(n-3) +3743*a(n-4) +21956*a(n-5) -87188*a(n-6) -23069*a(n-7) +409623*a(n-8) -235845*a(n-9) -749323*a(n-10) +679813*a(n-11) +599294*a(n-12) -680632*a(n-13) -199246*a(n-14) +294548*a(n-15) +14686*a(n-16) -53558*a(n-17) +3396*a(n-18) +3220*a(n-19) -192*a(n-20) -64*a(n-21) for n>22
EXAMPLE
Some solutions for n=3
..0..1..4....0..1..2....0..2..0....0..1..2....0..3..4....0..2..0....0..3..0
..4..1..2....4..1..0....0..2..1....0..1..2....5..3..5....0..2..0....0..3..4
..2..1..4....4..3..4....5..2..0....4..1..2....0..2..5....5..2..5....0..1..4
..4..1..2....0..1..0....1..2..5....4..5..2....5..3..5....0..2..1....2..1..4
CROSSREFS
Sequence in context: A275154 A066890 A242296 * A377845 A135590 A187859
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 21 2013
STATUS
approved