[go: up one dir, main page]

login
Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
2

%I #16 Apr 03 2023 10:36:13

%S 37158601,7425967459,9013226179,13671059747,14140683563,17190420571,

%T 17210867747,18553286303,18563509891,19720992901,20064786439,

%U 22400387281,23728062893,29428753891,36195177107,41074421693,44786947187,45199948253,48845530249

%N Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

%C What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?

%H Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/SierpinskiNumber.html">Sierpinski number</a>

%H Fred Cohen and J. L. Selfridge, <a href="http://www.jstor.org/stable/2005463">Not every number is the sum or difference of two prime powers</a>, Math. Comput. 29 (1975), pp. 79-81.

%H Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_052.htm">Problem 52</a>

%Y Cf. A076336, A180247, A263562.

%Y Subsequence of A263347.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Oct 21 2015