[go: up one dir, main page]

login
A263560
Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
2
37158601, 7425967459, 9013226179, 13671059747, 14140683563, 17190420571, 17210867747, 18553286303, 18563509891, 19720992901, 20064786439, 22400387281, 23728062893, 29428753891, 36195177107, 41074421693, 44786947187, 45199948253, 48845530249
OFFSET
1,1
COMMENTS
What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?
LINKS
Chris Caldwell, The Prime Glossary, Sierpinski number
Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
Carlos Rivera, Problem 52
CROSSREFS
Subsequence of A263347.
Sequence in context: A273508 A340713 A263347 * A215130 A286037 A034645
KEYWORD
nonn
AUTHOR
STATUS
approved