Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 05 2015 17:34:14
%S 1,21,661,28941,1678501,124467021,11484880261,1290503997741,
%T 173495416001701,27499205820027021,5075028072491665861,
%U 1078923766195953890541,261780612944688782844901,71901410584558939807059021,22195276604290979611365107461,7651037112318147566092161607341
%N a(n) = sum(stirling2(n,k)*(k+2)!*(k+3)!, k=1..n)/144.
%C It appears that for all n the last digit of a(n) is 1.
%F Representation as a sum of infinite series of special values of hypergeometric functions of type 2F0, in Maple notation: sum(k^n*(k+2)!*(k+3)!*hypergeom([k+3,k+4],[],-1)/k!, k=1..infinity)/144, n=1,2... .
%F a(n) ~ exp(1/2) * (n+2)! * (n+3)! / 144. - _Vaclav Kotesovec_, Oct 05 2015
%p with(combinat): a:= n-> sum(stirling2(n, k)*(k+2)!*(k+3)!, k=1..n)/144: seq(a(n), n=1..20);
%t Table[Sum[StirlingS2[n, k] (k + 2)! (k + 3)!, {k, n}]/144, {n, 16}] (* _Michael De Vlieger_, Oct 05 2015 *)
%Y Cf. A261833.
%K nonn
%O 1,2
%A _Karol A. Penson_ and Katarzyna Gorska, Oct 05 2015