OFFSET
1,2
COMMENTS
It appears that for all n the last digit of a(n) is 1.
FORMULA
Representation as a sum of infinite series of special values of hypergeometric functions of type 2F0, in Maple notation: sum(k^n*(k+2)!*(k+3)!*hypergeom([k+3,k+4],[],-1)/k!, k=1..infinity)/144, n=1,2... .
a(n) ~ exp(1/2) * (n+2)! * (n+3)! / 144. - Vaclav Kotesovec, Oct 05 2015
MAPLE
with(combinat): a:= n-> sum(stirling2(n, k)*(k+2)!*(k+3)!, k=1..n)/144: seq(a(n), n=1..20);
MATHEMATICA
Table[Sum[StirlingS2[n, k] (k + 2)! (k + 3)!, {k, n}]/144, {n, 16}] (* Michael De Vlieger, Oct 05 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Oct 05 2015
STATUS
approved