%I #9 Dec 03 2015 04:48:04
%S 2,4,7,11,25,38,47,94,95,155,275,277,292,299,395,409,614,1409,1963,
%T 3422,5243,5884,5971,8527,10882,13223,16406,20851,28886
%N Numbers n such that n!3 + 3^10 is prime, where n!3 = n!!! is a triple factorial number (A007661).
%C Corresponding primes are: 59051, 59053, 59077, 59929, 608667049, 3091650738235049, 262134882788466747049, ...
%C a(30) > 50000.
%C Terms > 47 correspond to probable primes.
%H Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!3+59049&action=Search">PRP Records. Search for n!3+59049.</a>
%H Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a>
%H OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a>
%e 11!3 + 3^10 = 11*8*5*2 + 59049 = 59929 is prime, so 11 is in the sequence.
%t MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
%t Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^10] &]
%o (PARI) for(n=1, 1e3, if(ispseudoprime(prod(i=0, floor((n-1)/3), n-3*i) + 3^10), print1(n, ", "))) \\ _Altug Alkan_, Nov 18 2015
%Y Cf. A007661, A037082, A084438, A123910, A242994.
%K nonn,more
%O 1,1
%A _Robert Price_, Nov 18 2015