[go: up one dir, main page]

login
A261145
Numbers n such that n!3 + 3^10 is prime, where n!3 = n!!! is a triple factorial number (A007661).
6
2, 4, 7, 11, 25, 38, 47, 94, 95, 155, 275, 277, 292, 299, 395, 409, 614, 1409, 1963, 3422, 5243, 5884, 5971, 8527, 10882, 13223, 16406, 20851, 28886
OFFSET
1,1
COMMENTS
Corresponding primes are: 59051, 59053, 59077, 59929, 608667049, 3091650738235049, 262134882788466747049, ...
a(30) > 50000.
Terms > 47 correspond to probable primes.
EXAMPLE
11!3 + 3^10 = 11*8*5*2 + 59049 = 59929 is prime, so 11 is in the sequence.
MATHEMATICA
MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^10] &]
PROG
(PARI) for(n=1, 1e3, if(ispseudoprime(prod(i=0, floor((n-1)/3), n-3*i) + 3^10), print1(n, ", "))) \\ Altug Alkan, Nov 18 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Price, Nov 18 2015
STATUS
approved