[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261075
Semiprimes whose prime factors are of equal binary length and which differ from each other in exactly three bit positions.
5
527, 551, 1591, 2173, 2491, 2623, 3127, 5183, 5963, 6059, 6557, 6767, 6887, 7031, 7373, 7571, 7597, 7739, 7979, 8051, 8249, 8549, 8633, 8881, 9017, 9523, 9701, 10541, 10807, 11303, 11639, 12091, 12317, 12827, 14351, 19519, 20413, 20989, 21823, 22331, 23213, 24047, 24613, 24881, 24883, 25777, 25807, 26549, 26671, 26827, 26989, 27661, 28199, 28459, 28757, 29329
OFFSET
1,1
LINKS
N. S. Dattani & N. Bryans, Quantum factorization of 56153 with only 4 qubits, arXiv:1411.6758 [quant-ph], 2014.
EXAMPLE
291311 = 523 * 557 is included (as term a(334)) because 523 ("1000001011" in binary) and 557 ("1000101101" in binary) differ in exactly three bit-positions.
MATHEMATICA
Select[Range@ 30000, And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #, Total@ BitXor[IntegerDigits[#1, 2], IntegerDigits[#2, 2]] == 3 & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* Michael De Vlieger, Oct 08 2016 *)
PROG
(PARI)
A000523 = n -> logint(n, 2);
A020639(n) = if(1==n, n, vecmin(factor(n)[, 1]));
isA261075(n) = { my(a, b); if(bigomega(n)!=2, 0, a = A020639(n); b = (n/a); ((A000523(a) == A000523(b)) && (3 == norml2(binary(bitxor(a, b)))))); };
i=0; n=0; while(i < 10000, n++; if(isA261075(n), i++; write("b261075.txt", i, " ", n)));
(Scheme, with Antti Karttunen's IntSeq-library)
(define A261075 (MATCHING-POS 1 1 (lambda (n) (and (= 2 (A001222 n)) (= (A000523 (A020639 n)) (A000523 (A006530 n))) (= 3 (A101080bi (A020639 n) (A006530 n)))))))
CROSSREFS
Cf. also A261073, A261074.
Subsequence of A085721.
Sequence in context: A093226 A153660 A337779 * A250754 A158364 A232885
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 22 2015
STATUS
approved