[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of first n nonzero Jacobsthal numbers (A001045).
1

%I #29 Sep 24 2023 08:35:48

%S 1,1,3,15,165,3465,148995,12664575,2165642325,738484032825,

%T 504384594419475,688484971382583375,1880252456845835197125,

%U 10268058666835106011499625,112158004817839862963610403875

%N Product of first n nonzero Jacobsthal numbers (A001045).

%C Inspired by A015013.

%F a(n) = abs(A015013(n)).

%F a(n) ~ c * 2^(n*(n+1)/2) / 3^n, where c = QPochhammer(-2, 1/4)*QPochhammer(1/4)/3 = 1.21072413030105918013617285610590504636804163112313764347615924554000... - _Vaclav Kotesovec_, Mar 04 2021, updated Jul 19 2021

%F Equivalently, c = QPochhammer(-1/2). - _Vaclav Kotesovec_, Sep 24 2023

%e a(4) = 15 because a(4) = 1*1*3*5 = 15.

%t Table[Abs@QFactorial[n, -2], {n, 20}] (* _Vladimir Reshetnikov_, Sep 16 2016 *)

%t FoldList[Times,LinearRecurrence[{1,2},{1,1},20]] (* _Harvey P. Dale_, Apr 22 2019 *)

%t Table[(-1)^Floor[n/2] * QPochhammer[-2, 4, 1 + Floor[(n-1)/2]] * QPochhammer[4, 4, Floor[n/2]]/3^n, {n, 1, 20}] (* _Vaclav Kotesovec_, Mar 04 2021 *)

%o (PARI) a001045(n) = (2^n - (-1)^n) / 3;

%o a(n) = prod(i=1, n, a001045(i));

%Y Cf. A001045, A015013.

%K nonn,easy

%O 1,3

%A _Altug Alkan_, Apr 05 2016