[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269694
Product of first n nonzero Jacobsthal numbers (A001045).
1
1, 1, 3, 15, 165, 3465, 148995, 12664575, 2165642325, 738484032825, 504384594419475, 688484971382583375, 1880252456845835197125, 10268058666835106011499625, 112158004817839862963610403875
OFFSET
1,3
COMMENTS
Inspired by A015013.
FORMULA
a(n) = abs(A015013(n)).
a(n) ~ c * 2^(n*(n+1)/2) / 3^n, where c = QPochhammer(-2, 1/4)*QPochhammer(1/4)/3 = 1.21072413030105918013617285610590504636804163112313764347615924554000... - Vaclav Kotesovec, Mar 04 2021, updated Jul 19 2021
Equivalently, c = QPochhammer(-1/2). - Vaclav Kotesovec, Sep 24 2023
EXAMPLE
a(4) = 15 because a(4) = 1*1*3*5 = 15.
MATHEMATICA
Table[Abs@QFactorial[n, -2], {n, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
FoldList[Times, LinearRecurrence[{1, 2}, {1, 1}, 20]] (* Harvey P. Dale, Apr 22 2019 *)
Table[(-1)^Floor[n/2] * QPochhammer[-2, 4, 1 + Floor[(n-1)/2]] * QPochhammer[4, 4, Floor[n/2]]/3^n, {n, 1, 20}] (* Vaclav Kotesovec, Mar 04 2021 *)
PROG
(PARI) a001045(n) = (2^n - (-1)^n) / 3;
a(n) = prod(i=1, n, a001045(i));
CROSSREFS
Sequence in context: A097489 A080696 A015013 * A153280 A132683 A059386
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Apr 05 2016
STATUS
approved