[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269659
Number of length-6 0..n arrays with no adjacent pair x,x+1 repeated.
2
42, 626, 3816, 15036, 45590, 115902, 259476, 527576, 994626, 1764330, 2976512, 4814676, 7514286, 11371766, 16754220, 24109872, 33979226, 47006946, 63954456, 85713260, 113318982, 147966126, 191023556, 244050696, 308814450, 387306842
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^6 + 6*n^5 + 15*n^4 + 14*n^3 + 3*n^2 + 3*n.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: 2*x*(21 + 166*x + 158*x^2 + 17*x^4 - 2*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..1. .3. .3. .1. .2. .0. .1. .2. .2. .0. .3. .2. .2. .0. .2. .2
..1. .0. .3. .0. .2. .0. .1. .3. .2. .0. .2. .0. .1. .3. .1. .0
..1. .2. .0. .0. .2. .2. .2. .0. .0. .0. .0. .3. .0. .2. .0. .2
..2. .0. .1. .3. .2. .0. .3. .1. .2. .2. .1. .3. .0. .2. .2. .0
..1. .0. .2. .0. .0. .3. .0. .1. .0. .2. .0. .1. .1. .0. .1. .1
..3. .1. .2. .1. .2. .2. .0. .1. .3. .0. .2. .3. .2. .0. .2. .3
CROSSREFS
Row 6 of A269656.
Sequence in context: A279888 A104901 A091962 * A007746 A200853 A214945
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 02 2016
STATUS
approved