# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a269659 Showing 1-1 of 1 %I A269659 #7 Jan 25 2019 16:49:52 %S A269659 42,626,3816,15036,45590,115902,259476,527576,994626,1764330,2976512, %T A269659 4814676,7514286,11371766,16754220,24109872,33979226,47006946, %U A269659 63954456,85713260,113318982,147966126,191023556,244050696,308814450,387306842 %N A269659 Number of length-6 0..n arrays with no adjacent pair x,x+1 repeated. %H A269659 R. H. Hardin, Table of n, a(n) for n = 1..210 %F A269659 Empirical: a(n) = n^6 + 6*n^5 + 15*n^4 + 14*n^3 + 3*n^2 + 3*n. %F A269659 Conjectures from _Colin Barker_, Jan 25 2019: (Start) %F A269659 G.f.: 2*x*(21 + 166*x + 158*x^2 + 17*x^4 - 2*x^5) / (1 - x)^7. %F A269659 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7. %F A269659 (End) %e A269659 Some solutions for n=3: %e A269659 ..1. .3. .3. .1. .2. .0. .1. .2. .2. .0. .3. .2. .2. .0. .2. .2 %e A269659 ..1. .0. .3. .0. .2. .0. .1. .3. .2. .0. .2. .0. .1. .3. .1. .0 %e A269659 ..1. .2. .0. .0. .2. .2. .2. .0. .0. .0. .0. .3. .0. .2. .0. .2 %e A269659 ..2. .0. .1. .3. .2. .0. .3. .1. .2. .2. .1. .3. .0. .2. .2. .0 %e A269659 ..1. .0. .2. .0. .0. .3. .0. .1. .0. .2. .0. .1. .1. .0. .1. .1 %e A269659 ..3. .1. .2. .1. .2. .2. .0. .1. .3. .0. .2. .3. .2. .0. .2. .3 %Y A269659 Row 6 of A269656. %K A269659 nonn %O A269659 1,1 %A A269659 _R. H. Hardin_, Mar 02 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE