Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 21 2016 11:46:53
%S 0,1,9,6,2,1,1,1,1,1,1,6,1,4,1,7,2,1,1,1,2,91,32,1,1,6,23,1,1,1,1,2,9,
%T 1,2,1,1,5,1,1,37,12,1,12,3,2,87,1,4,2,2,2,320,1,7,1,2,6,3,1,6,4,1,4,
%U 2,1,69,1,4,3,3,1,14,3,1,3,1,10,2,694,2,4,21,1,1,1,3,3,10,2,1,2,2,1,3,5,1,3,9,1
%N Continued fraction expansion of the Dirichlet eta function at 3.
%C Continued fraction expansion of Sum_{k>=1} (-1)^(k - 1)/k^3 = (3*zeta(3))/4 = 0.901542677369695714...
%H OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e 1/1^3 - 1/2^3 + 1/3^3 - 1/4^3 + 1/5^3 - 1/6^3 +... = 1/(1 + 1/(9 + 1/(6 + 1/(2 + 1/(1 + 1/(1 + 1/...)))))).
%t ContinuedFraction[(3 Zeta[3])/4, 100]
%Y Cf. A013631, A197070.
%K nonn,cofr
%O 0,3
%A _Ilya Gutkovskiy_, Feb 26 2016