[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269444
Continued fraction expansion of the Dirichlet eta function at 3.
0
0, 1, 9, 6, 2, 1, 1, 1, 1, 1, 1, 6, 1, 4, 1, 7, 2, 1, 1, 1, 2, 91, 32, 1, 1, 6, 23, 1, 1, 1, 1, 2, 9, 1, 2, 1, 1, 5, 1, 1, 37, 12, 1, 12, 3, 2, 87, 1, 4, 2, 2, 2, 320, 1, 7, 1, 2, 6, 3, 1, 6, 4, 1, 4, 2, 1, 69, 1, 4, 3, 3, 1, 14, 3, 1, 3, 1, 10, 2, 694, 2, 4, 21, 1, 1, 1, 3, 3, 10, 2, 1, 2, 2, 1, 3, 5, 1, 3, 9, 1
OFFSET
0,3
COMMENTS
Continued fraction expansion of Sum_{k>=1} (-1)^(k - 1)/k^3 = (3*zeta(3))/4 = 0.901542677369695714...
EXAMPLE
1/1^3 - 1/2^3 + 1/3^3 - 1/4^3 + 1/5^3 - 1/6^3 +... = 1/(1 + 1/(9 + 1/(6 + 1/(2 + 1/(1 + 1/(1 + 1/...)))))).
MATHEMATICA
ContinuedFraction[(3 Zeta[3])/4, 100]
CROSSREFS
Sequence in context: A354741 A355333 A089479 * A199431 A154899 A335563
KEYWORD
nonn,cofr
AUTHOR
Ilya Gutkovskiy, Feb 26 2016
STATUS
approved