[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268511
Odd integers n such that 3^n + 5^n = x^2 + y^2 (x and y integers) is solvable.
0
1, 5, 13, 17, 29, 89, 109, 149, 157, 193, 373
OFFSET
1,2
COMMENTS
Corresponding 3^n + 5^n values are 8, 3368, 1222297448, 763068593288, 186264583553473068008, ...
445 <= a(12) <= 509. 509, 661, 709 are terms. - Chai Wah Wu, Jul 22 2020
EXAMPLE
1 is a term because 3^1 + 5^1 = 8 = 2^2 + 2^2.
5 is a term because 3^5 + 5^5 = 3368 = 2^2 + 58^2.
13 is a term because 3^13 + 5^13 = 1222297448 = 4118^2 + 34718^2.
MATHEMATICA
Select[Range[1, 110, 2], Resolve@ Exists[{x, y}, Reduce[3^# + 5^# == (x^2 + y^2), {x, y}, Integers]] &] (* Michael De Vlieger, Feb 07 2016 *)
PROG
(PARI) is(n) = #bnfisintnorm(bnfinit(z^2+1), n);
for(n=1, 1e3, if(n%2==1 && is(3^n + 5^n), print1(n, ", ")));
(Python)
from sympy import factorint
A268511_list = []
for n in range(1, 50, 2):
m = factorint(3**n+5**n)
for d in m:
if d % 4 == 3 and m[d] % 2:
break
else:
A268511_list.append(n) # Chai Wah Wu, Dec 26 2018
CROSSREFS
Sequence in context: A354155 A123079 A273950 * A038938 A253079 A184851
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Feb 06 2016
EXTENSIONS
a(8)-a(9) from Giovanni Resta, Apr 10 2016
a(10)-a(11) from Chai Wah Wu, Jul 22 2020
STATUS
approved