[go: up one dir, main page]

login
A265131
Decimal expansion of positive x satisfying x^(x^x) = LambertW(1).
0
4, 4, 3, 3, 4, 4, 8, 8, 7, 3, 5, 7, 9, 1, 5, 0, 7, 4, 1, 5, 9, 8, 0, 0, 2, 7, 9, 3, 7, 8, 8, 6, 8, 8, 6, 0, 1, 2, 2, 5, 4, 1, 3, 9, 6, 5, 2, 2, 2, 2, 9, 2, 1, 4, 9, 5, 7, 7, 1, 3, 5, 9, 5, 4, 0, 8, 8, 4, 9, 4, 5, 4, 8, 8, 1, 8, 6, 0, 0, 2, 4, 6, 5, 9, 7, 8, 8, 6, 7, 6, 8, 7, 9, 2, 2, 8, 4, 9, 2, 5, 1, 9, 9, 4, 1, 5, 3, 0, 0, 1, 1, 9, 8, 1
OFFSET
0,1
EXAMPLE
0.44334488735791507415980027937886886012254139652223...
MATHEMATICA
RealDigits[x/.FindRoot[x^(x^x)==ProductLog[1], {x, 1}, WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Jul 19 2020 *)
PROG
(PARI) default(realprecision, 2000); solve(x=0.001, 3, x^(x^x)-lambertw(1))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Anders Hellström, Dec 02 2015
STATUS
approved