[go: up one dir, main page]

login
A265129
Triangle read by rows, formed as the sum of the two versions of the natural numbers filling an equilateral triangle.
1
2, 5, 5, 10, 10, 10, 17, 17, 17, 17, 26, 26, 26, 26, 26, 37, 37, 37, 37, 37, 37, 50, 50, 50, 50, 50, 50, 50, 65, 65, 65, 65, 65, 65, 65, 65, 82, 82, 82, 82, 82, 82, 82, 82, 82, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101
OFFSET
1,1
COMMENTS
The natural numbers can sequentially fill a right- or left-handed equilateral triangle. Componentwise addition of the values of these two triangles produces the present triangle.
The row sums for this triangle give A034262.
The difference between the right- and left-handed triangles produces A049581.
FORMULA
T(n,k) = n^2 + 1 for k = 1..n and n >= 1. - Georg Fischer, Oct 01 2021
Sum_{k=1..n} k * T(n,k) = A071237(n). - Alois P. Heinz, Oct 01 2021
EXAMPLE
Displayed as a triangle:
2;
5 5;
10 10 10;
17 17 17 17;
26 26 26 26 26;
37 37 37 37 37 37;
...
MAPLE
seq(seq(n^2+1, k=1..n), n=1..10); # Georg Fischer, Oct 01 2021
CROSSREFS
Column k=1 gives A002522.
Cf. A049581 (difference of triangles), A034262 (row sum of triangle), A069894 (center column).
Cf. A071237.
Sequence in context: A173567 A288726 A344572 * A212624 A351475 A034387
KEYWORD
nonn,tabl
AUTHOR
Craig Knecht, Dec 02 2015
EXTENSIONS
Row 6 with T(6,k)=37 inserted by Georg Fischer, Oct 01 2021
STATUS
approved