[go: up one dir, main page]

login
A257089
a(n) = log_3 (A256689(n)).
3
0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 4, 3, 1, 3, 1, 6, 2, 2, 2, 4, 1, 2, 2, 5, 1, 3, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 4, 1, 2, 3, 8, 2, 3, 1, 3, 2, 3, 1, 6, 1, 2, 3, 3, 2, 3, 1, 6, 5, 2, 1, 4, 2, 2, 2, 5, 1, 4, 2, 3, 2, 2, 2, 7, 1, 3, 3, 4
OFFSET
1,4
COMMENTS
a(n) is the logarithm to the base 3 of the denominator of the Dirichlet series of zeta(s)^(1/3). For details, see A256689.
LINKS
FORMULA
3^a(n) = A256689(n). a(n) = A007949(A256689(n)).
CROSSREFS
Cf. A046645 (k = 2, log_2), A257089 (k = 3, log_3), A257090 (k = 4, log_2), A257091 (k = 5, log_5).
Sequence in context: A034693 A216506 A072342 * A328892 A296131 A345344
KEYWORD
nonn
AUTHOR
Wolfgang Hintze, Apr 16 2015
STATUS
approved