%I #16 Jun 29 2019 11:23:48
%S 0,10,21,40,63,84,90,105,130,140,150,160,165,170,175,210,252,276,324,
%T 330,336,345,360,390,405,420,520,560,600,630,640,650,660,680,700,735,
%U 770,840,861,910,1008,1044,1050,1092,1104,1110,1170,1260,1284,1290,1296,1320,1344,1350,1365,1380,1407,1410,1440,1470,1533,1560,1620
%N Numbers divisible by prime(d+1) for each digit d of their base-4 representation.
%C The base-4 variant of A256882, A256883, A256865, ..., A256870 in bases 2, ..., 10.
%C A variant of A256874 where digits 0 are forbidden and divisibility by prime(d) is required.
%e 0 is divisible by prime(0+1)=2.
%e 10 = 22_4 and is divisible by prime(2+1)=5.
%e n = 1, 2, 3 are not divisible by prime(n+1) = 3, 5, 7; nor are 4=10_4, 5=11_4, and 7=13_4 divisible by prime(1+1) = 3; nor are 6=12_4, 8=20_4, 9=21_4 divisible by prime(2+1)=5.
%o is(n,b=4)=!for(i=1,#d=Set(digits(n,b)),n%prime(d[i]+1)&&return)
%Y Cf. A256882, A256883, A256865 - A256870, A256874 - A256879, A256786.
%K nonn,base
%O 1,2
%A _M. F. Hasler_, Apr 11 2015