[go: up one dir, main page]

login
A256884
Numbers divisible by prime(d+1) for each digit d of their base-4 representation.
14
0, 10, 21, 40, 63, 84, 90, 105, 130, 140, 150, 160, 165, 170, 175, 210, 252, 276, 324, 330, 336, 345, 360, 390, 405, 420, 520, 560, 600, 630, 640, 650, 660, 680, 700, 735, 770, 840, 861, 910, 1008, 1044, 1050, 1092, 1104, 1110, 1170, 1260, 1284, 1290, 1296, 1320, 1344, 1350, 1365, 1380, 1407, 1410, 1440, 1470, 1533, 1560, 1620
OFFSET
1,2
COMMENTS
The base-4 variant of A256882, A256883, A256865, ..., A256870 in bases 2, ..., 10.
A variant of A256874 where digits 0 are forbidden and divisibility by prime(d) is required.
EXAMPLE
0 is divisible by prime(0+1)=2.
10 = 22_4 and is divisible by prime(2+1)=5.
n = 1, 2, 3 are not divisible by prime(n+1) = 3, 5, 7; nor are 4=10_4, 5=11_4, and 7=13_4 divisible by prime(1+1) = 3; nor are 6=12_4, 8=20_4, 9=21_4 divisible by prime(2+1)=5.
PROG
is(n, b=4)=!for(i=1, #d=Set(digits(n, b)), n%prime(d[i]+1)&&return)
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Apr 11 2015
STATUS
approved