[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009490
Number of distinct orders of permutations of n objects; number of nonisomorphic cyclic subgroups of symmetric group S_n.
15
1, 1, 2, 3, 4, 6, 6, 9, 11, 14, 16, 20, 23, 27, 31, 35, 43, 47, 55, 61, 70, 78, 88, 98, 111, 123, 136, 152, 168, 187, 204, 225, 248, 271, 296, 325, 356, 387, 418, 455, 495, 537, 581, 629, 678, 732, 787, 851, 918, 986, 1056, 1133, 1217, 1307, 1399, 1498, 1600, 1708, 1823
OFFSET
0,3
COMMENTS
Also number of different LCM's of partitions of n.
a(n) <= A023893(n), which counts the nonisomorphic Abelian subgroups of S_n. - M. F. Hasler, May 24 2013
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
L. Elliott, A. Levine, and J. D. Mitchell, Counting monogenic monoids and inverse monoids, arXiv:2303.12387 [math.GR], 2023.
FORMULA
a(n) = Sum_{k=0..n} b(k), where b(k) is the number of partitions of k into distinct prime power parts (1 excluded) (A051613). - Vladeta Jovovic
G.f.: Product_{p prime} 1 + Sum(k >= 1, x^(p^k))) / (1-x). - David W. Wilson, Apr 19 2000
MAPLE
b:= proc(n, i) option remember; local p;
p:= `if`(i<1, 1, ithprime(i));
`if`(n=0 or i<1, 1, b(n, i-1)+
add(b(n-p^j, i-1), j=1..ilog[p](n)))
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 15 2013
MATHEMATICA
Table[ Length[ Union[ Apply[ LCM, Partitions[ n ], 1 ] ] ], {n, 30} ]
f[n_] := Length@ Union[LCM @@@ IntegerPartitions@ n]; Array[f, 60, 0]
(* Caution, the following is Extremely Slow and Resource Intensive *) CoefficientList[ Series[ Expand[ Product[1 + Sum[x^(Prime@ i^k), {k, 4}], {i, 10}]/(1 - x)], {x, 0, 30}], x]
b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, b[n, i-1]+Sum[b[n-p^j, i-1], {j, 1, Log[p, n]}]]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
PROG
(PARI) /* compute David W. Wilson's g.f., needs <1 sec for 1000 terms */
N=1000; x='x+O('x^N); /* N terms */
gf=1; /* generating function */
{ forprime(p=2, N,
sm = 1; pp=p; /* sum; prime power */
while ( pp<N, sm += x^pp; pp *= p; );
gf *= sm; /* update g.f. */
); }
gf/=(1-x); /* cumulative sums */
Vec(gf) /* show terms */ /* Joerg Arndt, Jan 19 2011 */
CROSSREFS
Cf. A051613 (first differences), A000792, A000793, A034891, A051625 (all cyclic subgroups), A256067.
Sequence in context: A006874 A357476 A034890 * A243930 A064778 A373700
KEYWORD
nonn,nice,easy
STATUS
approved