[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255252
Expansion of psi(x) * psi(-x)^2 in powers of x where psi() is a Ramanujan theta function.
2
1, -1, -1, 0, -2, 3, 2, 1, -1, -1, 1, -2, 1, -3, -2, -2, 3, 1, -1, 4, 3, -1, -1, 2, -4, 4, 1, 0, -1, -2, -3, -3, -4, 2, 3, -3, 0, 0, 5, 2, 0, -3, 2, -1, 4, 1, 0, 1, 3, 0, -2, 2, -1, -2, -4, -5, 2, 0, -7, 3, -4, 3, 1, 5, 2, -5, -1, -1, -3, 4, -1, 3, 4, 1, 4
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x) * f(-x^4)^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q) * eta(q^4)^2 in powers of q.
Euler transform of period 4 sequence [ -1, -1, -1, -3, ...].
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(4*k))^2.
2 * a(n) = A034950(4*n + 1).
EXAMPLE
G.f. = 1 - x - x^2 - 2*x^4 + 3*x^5 + 2*x^6 + x^7 - x^8 - x^9 + x^10 + ...
G.f. = q^3 - q^11 - q^19 - 2*q^35 + 3*q^43 + 2*q^51 + q^59 - q^67 - q^75 + ...
MAPLE
A255252 := proc(n)
local psi, x, i ;
psi := add( A010054(i)*x^i, i=0..n) ;
psi*subs(x=-x, psi)^2 ;
coeftayl(%, x=0, n) ;
end proc:
seq(A255252(n), n=0..20) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^4]^2, {x, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (4 x^(3/8)), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2, n))};
CROSSREFS
Cf. A034950.
Sequence in context: A211994 A122402 A179008 * A174985 A008406 A039735
KEYWORD
sign
AUTHOR
Michael Somos, Feb 18 2015
STATUS
approved