[go: up one dir, main page]

login
A243616
Primes p of the form prime(n) + digitsum(n).
1
3, 5, 11, 19, 53, 67, 73, 83, 109, 131, 157, 167, 179, 239, 281, 431, 457, 499, 541, 577, 617, 683, 719, 739, 839, 977, 1021, 1031, 1063, 1097, 1117, 1231, 1301, 1327, 1439, 1451, 1459, 1493, 1559, 1571, 1913, 1949, 1999, 1997, 2099, 2137, 2221, 2287, 2447, 2459
OFFSET
1,1
LINKS
EXAMPLE
11 is in the sequence because it is prime and prime(4) + 4 = 7 + 4 = 11.
109 is in the sequence because it is prime and prime(26) + (2+6) = 101 + 8 = 109.
MAPLE
with(numtheory): A243616 = proc() local k; k:=ithprime(n)+add(i, i= convert((n), base, 10))(n); if isprime(k) then RETURN (k); fi; end: seq(A243616 (), n=1..500);
MATHEMATICA
A243616 = {}; Do[t = Prime[n] + Total[IntegerDigits[n]]; If [PrimeQ[t], AppendTo[A243616, t]], {n, 500}]; A243616
CROSSREFS
Sequence in context: A293820 A281380 A117272 * A147189 A118744 A092672
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Jun 07 2014
STATUS
approved