[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243204
Expansion of 2*x/((1-sqrt(1-2*(1-sqrt(1-4*x))))*sqrt(1-2*(1-sqrt(1-4*x))) * sqrt(1-4*x)).
1
1, 2, 8, 35, 160, 752, 3605, 17544, 86400, 429605, 2153008, 10860720, 55086421, 280692440, 1435868960, 7369703660, 37934443008, 195748568256, 1012292239955, 5244933087000, 27220980100160, 141486701601630, 736387364237280, 3837221866576800, 20016901815607125
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(2*k-1,k)*binomial(2*n-k-1,n-k).
G.f.: A(x) = x*F'(x)/F(x), where F(x)=x*C(x)*C(x*C(x)), C(x) is g.f. of A000108.
a(n) ~ 2^(4*n-3/2) / (sqrt(Pi*n) * 3^(n-1/2)). - Vaclav Kotesovec, Jun 02 2014
MATHEMATICA
CoefficientList[Series[2*x / (Sqrt[1-4*x] + Sqrt[-1+2*Sqrt[1-4*x]] *Sqrt[1-4*x] + 8*x-2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 02 2014 *)
PROG
(Maxima)
a(n):=sum(binomial(2*k-1, k)*binomial(2*n-k-1, n-k), k, 0, n);
(PARI) my(x='x+O('x^50)); Vec(2*x/((1-sqrt(1-2*(1-sqrt(1-4*x))))*sqrt(1-2*(1-sqrt(1-4*x)))*sqrt(1-4*x))) \\ G. C. Greubel, Jun 01 2017
CROSSREFS
Sequence in context: A326294 A184786 A082759 * A279013 A137265 A364472
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 01 2014
STATUS
approved