[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279013
a(n) = Sum_{k=0..n} binomial(2*k,k)/(k+1)*binomial(2*n-1,n-k).
0
1, 2, 8, 35, 161, 768, 3773, 19006, 97840, 513264, 2737121, 14805805, 81082383, 448805300, 2507310567, 14120503129, 80082573017, 456977964520, 2621830478785, 15114658956625, 87508451311125, 508589225952740, 2966098696204660
OFFSET
0,2
FORMULA
G.f.: (2*(1-sqrt(1-((1-sqrt(1-4*x))^2)/x))*(1/sqrt(1-4*x)+1)/2*x)/((1-sqrt(1-4*x))^2).
Conjecture D-finite with recurrence: 2*n*(n+1)*(2*n-3)*a(n) -n*(101*n^2-312*n+203)*a(n-1) +(995*n^3-5570*n^2+9567*n-4984)*a(n-2) +2*(-2393*n^3+19300*n^2-50494*n+42835)*a(n-3) +4*(2*n7)*(1408*n^2-9889*n+16690)*a(n-4) -2600*(n-5)*(2*n-7)*(2*n-9)*a(n-5)=0. - R. J. Mathar, Jan 27 2020
a(n) ~ 5^(2*n + 1/2) / (3^(3/2) * sqrt(Pi) * n^(3/2) * 2^(2*n - 2)). - Vaclav Kotesovec, Nov 19 2021
MATHEMATICA
Table[Sum[Binomial[2k, k]/(k+1) Binomial[2n-1, n-k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Feb 06 2019 *)
PROG
(Maxima)
taylor((2*(1-sqrt(1-((1-sqrt(1-4*x))^2)/x))*(1/sqrt(1-4*x)+1)/2*x)/((1-sqrt(1-4*x))^2), x, 0, 27);
CROSSREFS
Sequence in context: A184786 A082759 A243204 * A137265 A364472 A303070
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 03 2016
STATUS
approved