[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242761
Decimal expansion of the escape probability for a random walk on the 3-D cubic lattice (a Polya random walk constant).
3
6, 5, 9, 4, 6, 2, 6, 7, 0, 4, 4, 9, 0, 0, 0, 8, 5, 7, 1, 7, 3, 7, 2, 6, 8, 1, 5, 5, 6, 7, 0, 9, 7, 1, 0, 3, 2, 8, 9, 3, 9, 1, 7, 8, 2, 8, 7, 5, 6, 9, 7, 9, 0, 2, 2, 3, 6, 7, 6, 3, 8, 9, 4, 6, 2, 2, 2, 0, 8, 0, 3, 0, 5, 4, 1, 0, 3, 7, 6, 1, 5, 3, 5, 7, 4, 7, 1, 9, 1, 8, 1, 1, 0, 9, 4, 2, 8, 6, 9, 0
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9, p. 322.
LINKS
Eric Weisstein's MathWorld, Polya's Random Walk Constants
FORMULA
Equals (16*sqrt(2/3)*Pi^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where Gamma is the Euler Gamma function.
EXAMPLE
0.6594626704490008571737268155670971...
MATHEMATICA
p = (16*Sqrt[2/3]*Pi^3)/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[p, 10, 100] // First
PROG
(PARI) default(realprecision, 100); (16*sqrt(2/3)*Pi^3)/(gamma(1/24)* gamma(5/24)*gamma(7/24)*gamma(11/24)) \\ G. C. Greubel, Oct 26 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (16*Sqrt(2/3)*Pi(R)^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Oct 26 2018
KEYWORD
nonn,cons
AUTHOR
STATUS
approved