[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086231
Decimal expansion of value of Watson's integral.
14
1, 5, 1, 6, 3, 8, 6, 0, 5, 9, 1, 5, 1, 9, 7, 8, 0, 1, 8, 1, 5, 6, 0, 1, 2, 1, 5, 9, 6, 8, 1, 4, 2, 0, 7, 7, 9, 9, 5, 5, 3, 8, 7, 0, 4, 4, 4, 5, 2, 2, 6, 2, 6, 7, 6, 5, 6, 6, 9, 8, 0, 4, 6, 3, 6, 5, 8, 0, 8, 6, 3, 2, 0, 3, 5, 3, 5, 2, 1, 4, 5, 0, 4, 0, 1, 6, 1, 1, 7, 4, 1, 2, 0, 9, 6, 8, 8, 1, 1, 3, 9, 2
OFFSET
1,2
LINKS
M. Lawrence Glasser and I. John Zucker, Extended Watson integrals for the cubic lattices, Proceedings of the National Academy of Sciences, Vol. 74, No. 5 (1977), pp. 1800-1801, alternative link.
Anthony J. Guttmann, Lattice Green's functions in all dimensions, J. Phys. A.: Math. Theor., Vol. 43, No. 30 (2010) 305205.
George N. Watson, Three triple integrals, The Quarterly Journal of Mathematics, Vol. os-10, No. 1 (1939), pp. 266-276.
Eric Weisstein's World of Mathematics, Pólya's Random Walk Constants.
FORMULA
Equals (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2/(32*Pi^3). - G. C. Greubel, Jan 07 2018
Equals 1/(1 - A086230). - Amiram Eldar, Aug 28 2020
Equals Sum_{k>=0} A002896(k)/36^k. - Vaclav Kotesovec, Apr 23 2023
EXAMPLE
1.51638605915197801815601215968142077995538704445226267656698...
MAPLE
evalf((sqrt(3)-1)*(GAMMA(1/24)*GAMMA(11/24))^2 / (32*Pi^3), 120); # Vaclav Kotesovec, Sep 16 2014
MATHEMATICA
RealDigits[ N[ Sqrt[6]/32/Pi^3*Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24], 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
PROG
(PARI) (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2 / (32*Pi^3) \\ Altug Alkan, Apr 13 2016
(Magma) C<i> := ComplexField(); (Sqrt(3)-1)*(Gamma(1/24)*Gamma(11/24))^2/(32*Pi(C)^3); // G. C. Greubel, Jan 07 2018
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 12 2003
STATUS
approved