[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n^3 + 4*n^2 - 5*n + 1.
4

%I #18 Sep 08 2022 08:46:07

%S 1,1,15,49,109,201,331,505,729,1009,1351,1761,2245,2809,3459,4201,

%T 5041,5985,7039,8209,9501,10921,12475,14169,16009,18001,20151,22465,

%U 24949,27609,30451,33481,36705,40129,43759,47601,51661,55945,60459,65209,70201,75441,80935,86689,92709,99001,105571,112425,119569

%N n^3 + 4*n^2 - 5*n + 1.

%H Vincenzo Librandi, <a href="/A241577/b241577.txt">Table of n, a(n) for n = 0..1000</a>

%H Adalbert Kerber, <a href="http://dx.doi.org/10.1016/0012-365X(78)90163-2">A matrix of combinatorial numbers related to the symmetric groups</a>, Discrete Math., 21 (1978), 319-321. See Eq. (7), col. 4.

%H A. Kerber, <a href="/A004211/a004211.pdf">A matrix of combinatorial numbers related to the symmetric groups<</a>, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: (1-3*x+17*x^2-9*x^3)/(1-x)^4. - _Vincenzo Librandi_, Apr 28 2014

%F Recurrence: a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Fung Lam_, May 11 2014

%t CoefficientList[Series[(1 - 3 x + 17 x^2 - 9 x^3)/(1 - x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, Apr 28 2014 *)

%o (Magma) [n^3+4*n^2-5*n+1: n in [0..50]]; // _Vincenzo Librandi_, Apr 28 2014

%o (PARI) a(n)=n^3+4*n^2-5*n+1 \\ _Charles R Greathouse IV_, Aug 26 2014

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Apr 27 2014