[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241577
n^3 + 4*n^2 - 5*n + 1.
4
1, 1, 15, 49, 109, 201, 331, 505, 729, 1009, 1351, 1761, 2245, 2809, 3459, 4201, 5041, 5985, 7039, 8209, 9501, 10921, 12475, 14169, 16009, 18001, 20151, 22465, 24949, 27609, 30451, 33481, 36705, 40129, 43759, 47601, 51661, 55945, 60459, 65209, 70201, 75441, 80935, 86689, 92709, 99001, 105571, 112425, 119569
OFFSET
0,3
LINKS
Adalbert Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321. See Eq. (7), col. 4.
A. Kerber, A matrix of combinatorial numbers related to the symmetric groups<, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
FORMULA
G.f.: (1-3*x+17*x^2-9*x^3)/(1-x)^4. - Vincenzo Librandi, Apr 28 2014
Recurrence: a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Fung Lam, May 11 2014
MATHEMATICA
CoefficientList[Series[(1 - 3 x + 17 x^2 - 9 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 28 2014 *)
PROG
(Magma) [n^3+4*n^2-5*n+1: n in [0..50]]; // Vincenzo Librandi, Apr 28 2014
(PARI) a(n)=n^3+4*n^2-5*n+1 \\ Charles R Greathouse IV, Aug 26 2014
CROSSREFS
Sequence in context: A208155 A228219 A272039 * A199899 A020257 A298511
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 27 2014
STATUS
approved