[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240472
Primorial expansion of e.
0
2, 1, 1, 1, 3, 9, 3, 0, 1, 1, 16, 25, 8, 3, 32, 32, 37, 24, 53, 17, 28, 67, 52, 2, 21, 81, 56, 88, 9, 3, 80, 42, 15, 37, 107, 52, 32, 120, 49, 46, 84, 3, 129, 29, 159, 103, 90, 172, 128, 98, 202, 138, 207, 150, 249, 131, 132, 66, 9, 86, 137, 191, 236, 141, 222, 285, 8, 205, 310, 250, 63, 173, 288, 93, 294, 84, 66, 104, 28, 154, 93, 229, 96, 254, 333, 89, 126, 393, 388, 396, 418, 424, 356, 299, 482, 64, 114, 60, 513, 471
OFFSET
0,1
COMMENTS
The primorial expansion a(n) of a real number x is defined as x = a(0) + sum(i>0, a(i) / prime(i)# ) where a(0) = floor(x) and 0 <= a(i) < prime(i) for all i > 0.
FORMULA
x(0) = e;
a(n) = floor(x(n));
x(n + 1) = prime(n) * (x(n) - a(n));
where prime(n) = A000040(n) is the n-th prime number.
a(n) gives the primorial expansion of x(0) = e.
EXAMPLE
e = 2 + 1/prime(1)# + 1/prime(2)# + 1/prime(3)# + 3/prime(4)# + 9/prime(5)# + ...
where prime(n)# = A002110(n) is the n-th primorial.
MATHEMATICA
pe = Block[{x = #, $MaxExtraPrecision = \[Infinity]},
Do[x = Prime[i] (x - Sow[x // Floor]) // Expand, {i, #2 - 1}];
x // Floor // Sow] // Reap // Last // Last // Function;
pe[E, 100]
CROSSREFS
Sequence in context: A251660 A279453 A054252 * A366836 A007442 A362483
KEYWORD
nonn
AUTHOR
Albert Lau, Apr 06 2014
STATUS
approved