[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230049
Triangle such that the g.f. of column k equals 1/(1-x)^(k^3) for k>=0, as read by rows.
2
1, 0, 1, 0, 1, 1, 0, 1, 8, 1, 0, 1, 36, 27, 1, 0, 1, 120, 378, 64, 1, 0, 1, 330, 3654, 2080, 125, 1, 0, 1, 792, 27405, 45760, 7875, 216, 1, 0, 1, 1716, 169911, 766480, 333375, 23436, 343, 1, 0, 1, 3432, 906192, 10424128, 10668000, 1703016, 58996, 512, 1, 0, 1, 6435, 4272048, 119877472, 275234400, 93240126, 6784540, 131328, 729, 1
OFFSET
0,9
FORMULA
T(n, k) = binomial(k^3+n-k-1, n-k) for n>=k>=0.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 8, 1;
0, 1, 36, 27, 1;
0, 1, 120, 378, 64, 1;
0, 1, 330, 3654, 2080, 125, 1;
0, 1, 792, 27405, 45760, 7875, 216, 1;
0, 1, 1716, 169911, 766480, 333375, 23436, 343, 1;
0, 1, 3432, 906192, 10424128, 10668000, 1703016, 58996, 512, 1;
0, 1, 6435, 4272048, 119877472, 275234400, 93240126, 6784540, 131328, 729, 1; ...
PROG
(PARI) {T(n, k) = polcoeff(1/(1-x+x*O(x^n))^(k^3), n-k)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k) = binomial(k^3+n-k-1, n-k)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A230050 (row sums), A229711.
Sequence in context: A365237 A342980 A094922 * A088990 A351129 A214097
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 06 2013
STATUS
approved