[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230051
Number of permutations of [n] avoiding adjacent step pattern {up}^7.
9
1, 1, 2, 6, 24, 120, 720, 5040, 40319, 362863, 3628550, 39913170, 478947480, 6226179960, 87164597520, 1307440134000, 20918580896069, 355608034188517, 6400803479701178, 121612584595293870, 2432198062707745560, 51075033128533094520, 1123625953230764250960
OFFSET
0,3
REFERENCES
R. E. L. Aldred, M. D. Atkinson, D. J. McCaughan, Avoiding consecutive patterns in permutations. Adv. in Appl. Math., 45(3), 449-461, 2010.
LINKS
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
FORMULA
E.g.f.: 1 / Sum_{n>=0} (8*n+1-x)*x^(8*n)/(8*n+1)!.
E.g.f. (Aldred, Atkinson, McCaughan, 2010): 4/(exp(-x) + cos(x) - sin(x) + 2*cos(x/sqrt(2))*cosh(x/sqrt(2)) - sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)) - sqrt(2)*cosh(x/sqrt(2))*sin(x/sqrt(2))). - Vaclav Kotesovec, Aug 23 2014
a(n)/n! ~ c / r^n, where r = 1.0000220496837836995332841475679738951237308817759821845322... is the root of the equation exp(-r) + cos(r) - sin(r) + 2*cos(r/sqrt(2)) * cosh(r/sqrt(2)) - sqrt(2)*cos(r/sqrt(2)) * sinh(r/sqrt(2)) - sqrt(2) * cosh(r/sqrt(2)) * sin(r/sqrt(2)) = 0, c = 2*sqrt(2) / (r*sqrt(2 + cosh(sqrt(2)*r) - cos(2*r) + 2*cosh(r/sqrt(2)) * (2*sqrt(2)*sin(r) * sin(r/sqrt(2)) - cos(sqrt(2)*r) * cosh(r/sqrt(2))))) = 1.0001516144914746839400607922657094772985420791612537... . - Vaclav Kotesovec, Aug 23 2014, updated Feb 01 2015
EXAMPLE
a(8) = 40319 = 8!-1: only permutation 12345678 does not avoid {up}^7.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t<6, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
add(b(u-j, o+j-1, 0), j=1..u))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..30);
MATHEMATICA
nn=20; r=7; a=Apply[Plus, Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i, {i, 1, r}]), {x, 0, nn}]][[n]]/(n+r)!, {n, 1, nn-r}]]/.y->-1; Range[0, nn]! CoefficientList[Series[1/(1-x-a), {x, 0, nn}], x] (* Geoffrey Critzer, Feb 25 2014 *)
CoefficientList[Series[4/(E^(-x) + Cos[x] - Sin[x] + 2*Cos[x/Sqrt[2]] * Cosh[x/Sqrt[2]] - Sqrt[2] * Cos[x/Sqrt[2]] * Sinh[x/Sqrt[2]] - Sqrt[2] * Cosh[x/Sqrt[2]] * Sin[x/Sqrt[2]]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 23 2014 *)
CROSSREFS
Column k=127 of A242784.
Sequence in context: A226439 A248840 A072131 * A067455 A033646 A319549
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 07 2013
STATUS
approved