[go: up one dir, main page]

login
A239951
Number of partitions of n such that (number of distinct parts) > least part.
5
0, 0, 0, 1, 2, 4, 6, 10, 14, 22, 30, 44, 59, 84, 109, 151, 195, 261, 335, 440, 558, 723, 909, 1160, 1452, 1829, 2272, 2839, 3503, 4336, 5326, 6542, 7984, 9756, 11842, 14376, 17382, 20985, 25255, 30355, 36372, 43528, 51960, 61925, 73645, 87460, 103648, 122650
OFFSET
0,5
LINKS
FORMULA
a(n) + A239949(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 6 partitions: 51, 411, 321, 3111, 2211, 21111.
MAPLE
b:= proc(n, i, d) option remember; `if`(n=0, 1, `if`(i<=d, 0,
add(b(n-i*j, i-1, d+`if`(j=0, 0, 1)), j=0..n/i)))
end:
a:= n-> combinat[numbpart](n) -b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 02 2014
MATHEMATICA
z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*)
Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*)
Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*)
Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*)
Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*)
b[n_, i_, d_] := b[n, i, d] = If[n==0, 1, If[i<=d, 0, Sum[b[n-i*j, i-1, d + If[j==0, 0, 1]], {j, 0, n/i}]]]; a[n_] := PartitionsP[n] - b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 17 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2014
STATUS
approved