OFFSET
0,7
COMMENTS
These are partitions containing the sum of some non-singleton submultiset of the parts, a variation of non-binary sum-full partitions where parts cannot be re-used, ranked by A364532. The complement is counted by A237667. The binary version is A237113, or A363225 with re-usable parts. This sequence is weakly increasing. - Gus Wiseman, Aug 12 2023
LINKS
Giovanni Resta, Table of n, a(n) for n = 0..100
Giovanni Resta, C program for computing a(0)-a(100)
EXAMPLE
a(6) = 4 counts these partitions: 123, 1113, 1122, 11112.
From Gus Wiseman, Aug 12 2023: (Start)
The a(0) = 0 through a(9) = 13 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(3111) (31111) (3221) (4311)
(21111) (211111) (4211) (5211)
(22211) (32211)
(32111) (33111)
(41111) (42111)
(221111) (222111)
(311111) (321111)
(2111111) (411111)
(2211111)
(3111111)
(21111111)
(End)
MATHEMATICA
z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]] - m
(* Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 15}] (* Gus Wiseman, Aug 12 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 11 2014
EXTENSIONS
a(21)-a(47) from Giovanni Resta, Feb 22 2014
STATUS
approved